# Constancy of the dimension in codimension one and locality of the unit normal on $\mathrm{RCD}(K,N)$ spaces

@inproceedings{Bru2021ConstancyOT, title={Constancy of the dimension in codimension one and locality of the unit normal on \$\mathrm\{RCD\}(K,N)\$ spaces}, author={Elia Bru{\'e} and Enrico Pasqualetto and Daniele Semola}, year={2021} }

The aim of this paper is threefold. We first prove that, on RCD(K, N) spaces, the boundary measure of any set with finite perimeter is concentrated on the n-regular set Rn, where n ≤ N is the essential dimension of the space. After, we discuss localization properties of the unit normal providing representation formulae for the perimeter measure of intersections and unions of sets with finite perimeter. Finally, we study Gauss-Green formulae for essentially bounded divergence measure vector… Expand

#### One Citation

On master test plans for the space of BV functions

- Mathematics
- 2021

We prove that on an arbitrary metric measure space a countable collection of test plans is sufficient to recover all BV functions and their total variation measures. In the setting of non-branching… Expand

#### References

SHOWING 1-10 OF 49 REFERENCES

Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces

- Mathematics
- Geometric and Functional Analysis
- 2019

This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD(K,N) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space… Expand

Rectifiability of the reduced boundary for sets of finite perimeter over $\RCD(K,N)$ spaces.

- Mathematics
- 2019

This note is devoted to the study of sets of finite perimeter over $\RCD(K,N)$ metric measure spaces. Its aim is to complete the picture about the generalization of De Giorgi's theorem within this… Expand

H\"older continuity of tangent cones in RCD(K,N) spaces and applications to non-branching

- Mathematics
- 2020

In this paper we prove that a metric measure space $(X,d,m)$ satisfying the finite Riemannian curvature-dimension condition ${\sf RCD}(K,N)$ is non-branching and that tangent cones from the same… Expand

Structure theory of metric measure spaces with lower Ricci curvature bounds

- Mathematics
- Journal of the European Mathematical Society
- 2019

We prove that a metric measure space (X,d,m) satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space W1,2 is Hilbert is rectifiable. That is, a RCD∗(K,N)-space is… Expand

Constancy of the Dimension for RCD(
K
,
N
) Spaces via Regularity of Lagrangian Flows

- Mathematics
- Communications on Pure and Applied Mathematics
- 2020

We prove a regularity result for Lagrangian flows of Sobolev vector fields over RCD(K,N) metric measure spaces, regularity is understood with respect to a newly defined quasi-metric built from the… Expand

Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows

- Mathematics
- 2015

Aim of this paper is to discuss convergence of pointed metric measure spaces in absence of any compactness condition. We propose various definitions, show that all of them are equivalent and that for… Expand

On the volume measure of non-smooth spaces with Ricci curvature bounded below

- Mathematics
- 2016

We prove that, given an $RCD^{*}(K,N)$-space $(X,d,m)$, then it is possible to $m$-essentially cover $X$ by measurable subsets $(R_{i})_{i\in \mathbb{N}}$ with the following property: for each $i$… Expand

New formulas for the Laplacian of distance functions and applications

- Mathematics
- 2018

The goal of the paper is to prove an exact representation formula for the Laplacian of the distance (and more generally for an arbitrary 1-Lipschitz function) in the framework of metric measure… Expand

New stability results for sequences of metric measure spaces with uniform Ricci bounds from below

- Mathematics
- 2016

The aim of this paper is to provide new stability results for sequences of metric measure spaces $(X_i,d_i,m_i)$ convergent in the measured Gromov-Hausdorff sense. By adopting the so-called extrinsic… Expand

On the differential structure of metric measure spaces and applications

- Mathematics
- 2012

The main goals of this paper are: i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev… Expand